Abstract
Heterojunction composites based on n-type TiO2 nanotubes arrays (TNAs) coupled with p-type Cu2O nanoparticles were synthesized using a square wave voltammetry deposition method for in situ deposition of Cu2O nanoparticles onto the inner surfaces and interfaces of TNAs. The prepared samples were characterized by field-emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis spectroscopy. When compared with pure TNAs, the Cu2O–TNAs heterojunction composites exhibit considerably higher photocurrent density under visible-light irradiation and enhanced photocatalytic activity for the visible-light-driven photodegradation of methyl orange. Moreover, the photocurrent densities and photocatalytic activity of the Cu2O–TNAs heterostructures largely depend on the deposition potential which determines the content of the Cu2O nanoparticles. The Cu2O–TNAs prepared by the deposition potential of −1.0 V showed the highest photocurrent density (0.91 mA cm−2) and the largest photodegradation rate of methyl orange (88.8%) at the applied potential of 0.5 V under visible light irradiation. The enhanced photoelectrocatalytic activity can be attributed to reducing the recombination rate of the photoexcited electron–hole pairs in TNAs when coupled with Cu2O nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.