Abstract
A series of g-C3N4/ZnAl2O4 composites were prepared using a conventional calcination method and the heterostructures were systematically characterized. It was found that the combination of g-C3N4 with ZnAl2O4 significantly improve their photocatalytic activities. The optimum photocatalyst of composite is at 5% (wt%) of ZnAl2O4, whose degradation efficiency for methyl orange (MO) was 96% within 120min under visible-light irradiation. The formation of heterojunction between g-C3N4 and ZnAl2O4 can facilitate efficient charge separation of photogenerated electron-hole pairs, which were confirmed by electrochemical impedance spectroscopy (EIS). As a result, the photocatalytic properties of composites were enhanced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.