Abstract

In this paper, g-C3N4/SnO2:Sb composite photocatalysts were fabricated by in situ loading Sb-doped SnO2 (SnO2:Sb) nanoparticles on graphitic carbon nitride (g-C3N4) nanosheets via a facile hydrothermal method. The synthesized g-C3N4/SnO2:Sb composites delivered enhanced visible light photocatalytic performance for degradation of rhodamine B in comparison with g-C3N4/SnO2 composites without doping Sb. Various techniques including XRD, SEM, TEM, FTIR, XPS, PL and electrochemical method were employed to demonstrate the successful fabrication of g-C3N4/SnO2:Sb composite and to investigate the enhanced mechanism of photocatalytic activity. The improvement of visible light absorption and the promotion of separation efficiency and interfacial transfer of photogenerated carriers induced by Sb doping were responsible for the enhancement of photocatalytic activity. This study provides a simple and convenient method to synthesize a visible light responsive catalyst with promising performance for the potential application in environmental protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call