Abstract
Bismuth-based Sillen-Aurivillius compounds are being explored as efficient photocatalyst materials for the degradation of organic pollutants due to their unique layered structure that favours effective separation of electron-hole pairs. In this work, we synthesized Sillen-Aurivillius-related Bi2YO4Cl with the bandgap of 2.5 eV by a simple solid-state reaction and sensitized with rhodium nickel (RhNi) nanoparticles (NPs) to form the RhNi/Bi2YO4Cl heterostructure. Photocatalytic activities of BiOCl, Bi2YO4Cl and the RhNi/Bi2YO4Cl heterostructure were examined for the degradation of rhodamine- 6G under visible-light illumination. Results demonstrated that the photocatalytic dye degradation efficiency of RhNi/Bi2YO4Cl heterostructures is higher than those of BiOCl and Bi2YO4Cl, attributed to the synergistic molecular-scale alloying effect of bimetallic RhNi NPs. The plausible mechanism for the degradation of rhodamine-6G and the effective electron-hole pair utilization mechanism were discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.