Abstract

This study was designed to determine if adenoviral-mediated delivery of a transgene encoding the beta 2-adrenergic receptor (beta 2-AR) to the carotid arterial wall could result in alterations in in vivo vascular function. De-endothelialized rat carotid arteries were infused in vivo with 0.1 mg/ml elastase and adenovirus [6 x 10(9) plaque forming units (PFU)] containing either the marker gene beta-galactosidase (Adeno-beta-gal), DNA encoding the human beta 2-AR (Adeno-beta 2-AR), or no transgene. This low concentration of elastase increased the water permeability (5.2 +/- 0.6 v 1.9 +/- 0.4 x 10(-8) cm/s/mmHg, n = 4, P < 0.0001) without affecting either the vasomotor responsiveness or the morphology of the arterial wall. A transfection efficiency of 73% was achieved with Adeno-beta-gal (n = 3). beta-gal expression was associated with infrequent appearance of T and B lymphocytes, or neutrophil infiltration. Five days after infection with Adeno-beta 2-AR, the total beta-AR density increased six-fold (67.8 +/- 3.4 v 397.0 +/- 155.5 fmol/mg protein, n = 5, P < 0.01); isoproterenol-induced vasorelaxation at transmural pressures from 10-110/mmHg increased (P < 0.01) compared to arteries exposed to control virus (empty adenovirus), n = 4; and isoproterenol-stimulated cAMP production was increased by 65% (n = 5). Thus, adenoviral-mediated delivery of beta 2-ARs into large artery walls results in enhanced beta-AR-mediated vasorelaxation via augmentation in cAMP levels in vascular smooth muscle cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.