Abstract

The ultimate goal of pancreatic tissue engineering is to create a long-lived substitute organ to treat diabetes. However, the lack of neovascularization and the occurrence of immune response limit the efficacy of tissue-engineered pancreas after in vivo transplantation. Platelet-rich plasma (PRP) is an autologous platelet concentrate containing a large number of growth factors and immunoregulatory factors. The aim of this study was to evaluate rat pancreatic decellularized scaffold (PDS) loaded with PRP for vascularization, host inflammatory response and macrophage polarization in an animal model. The study results indicated that compared to PDS, PRP-loading PDS exhibited the enhanced mechanical properties and released growth factors in a slow and sustained manner to supplement the loss of growth factors during decellularization. In vitro, human umbilical vein endothelial cells (HUVECs) were seeded in PDS and PRP-loading PDS, and cultured in the circular perfusion system. When compared with PDS, PRP-loading PDS significantly promoted the colonization, proliferation and pro-angiogenic genes expression of cells on scaffolds. In vivo, PDS loaded with PRP then re-endothelialized with HUVECs were implanted subcutaneously in rats, which enhanced the angiogenesis of scaffolds, inhibited the host inflammatory response, and induced the polarization dominated by pro-regenerative M2 macrophages that also facilitated tissue vascular regeneration. Thus, the re-endothelialized PRP-loading PDS may represent a promising bioengineered pancreas with sustained vascularization and excellent biocompatibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call