Abstract
This work proposes an innovative approach to enhance the localization of unmanned aerial vehicles (UAVs) in dynamic environments. The methodology integrates a sophisticated object-tracking algorithm to augment the established simultaneous localization and mapping (ORB-SLAM) framework, utilizing only a monocular camera setup. Moving objects are detected by harnessing the power of YOLOv4, and a specialized Kalman filter is employed for tracking. The algorithm is integrated into the ORB-SLAM framework to improve UAV pose estimation by correcting the impact of moving elements and effectively removing features connected to dynamic elements from the ORB-SLAM process. Finally, the results obtained are recorded using the TUM RGB-D dataset. The results demonstrate that the proposed algorithm can effectively enhance the accuracy of pose estimation and exhibits high accuracy and robustness in real dynamic scenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.