Abstract

The low spatial resolution of Gravity Recovery and Climate Experiment (GRACE) data limits their application in practical groundwater resource management. To overcome this limitation, this study developed a dynamic downscaling method based on a model using groundwater storage anomaly (GWSA) data to study groundwater storage changes in an inland arid region. The groundwater storage model was calibrated using publicly accessible data at a spatial resolution of 1°. The constructed model had a satisfactory fitting effect in both the calibration and validation periods, with correlation coefficients over 0.60, in general, and a root mean square error of less than 1.00 cm equivalent water height (EWH). It was found that the hydraulic gradient coefficient was the most sensitive parameter, whereas the boundary condition had an obvious influence on the simulated GWSA compared to the different forcing data. The model was then refined at a higher resolution (0.05°) using driving data to obtain downscaled GWSA data. The downscaled results had a similar pattern to the GRACE-derived GWSA and reflected the spatial heterogeneity across the basin scale and subregion scales. The downscaled GWSA shows that the groundwater storage had an overall downward trend during the period from 2003 to 2019 and the annual decline rates ranged from 0.22 to 0.32 cm/year in four subregions. A four-month time lag between the field-observed and downscaled GWSA was observed downstream of the study area. This study provides an applicable method for assessing groundwater storage changes for groundwater management at the local scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call