Abstract

Ultraviolet light-emitting devices (LEDs) were fabricated on the basis of Au/MgO/ZnO metal/insulator/semiconductor (MIS) heterostructures. By introducing a thermally oxidized p-type Cu2O hole-injection layer into this MIS structure, enhanced ultraviolet electroluminescence (EL) and random lasing with reduced threshold injection current are achieved. The enhancement mechanism is attributed to effective hole transfer from p-Cu2O to i-MgO under forward bias, which increases the initial carrier concentration of MgO dielectric layer and further promotes "impact-ionization" effect induced carrier generation and injection. The current study proposes a new and effective route to improve the EL performance of MIS junction LEDs via introducing extrinsic hole suppliers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.