Abstract

The ultraviolet photoconductivity of porous GaN (PGaN) produced by Pt-assisted electroless etching has been investigated. The photoresponse of PGaN prepared from highly doped GaN ( n > 10 18 cm − 3 ) shows enhanced ( 15 × ) magnitude and faster decay of persistent photoconductivity relative to bulk crystalline (CGaN), suggesting advantages for PGaN in photodetector applications. A space charge model for changes in photoconductivity is used to explain these observations. Heightened defect density in the etched material plays an important role in the enhanced photoconductivity in PGaN. Flux-dependent optical quenching (OQ) behavior, linked to the presence of metastable states, is also observed in PGaN as in CGaN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.