Abstract

Enhanced ultrafast optical nonlinearities of porous anodized aluminum oxide (AAO) nanostructures, well-known templates for quantum dots fabrication, have been investigated using the differential optical Kerr gate technique at 800 nm. The optical nonlinearity is strongly influenced by the pore number density, the pore size and the shape. Large values of the third-order nonlinear optical susceptibility (chi((3))) of the order of 10(-10)esu are measured. The nonlinear response time is faster than or comparable to the laser pulse width (90 fs) used. The origin and variation of such remarkable optical nonlinearities has been discussed by considering the nanoporous AAO as an effective medium and utilizing the extended Maxwell Garnet theory, and by considering the additional influence from pore diameter, pore shape and surface states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.