Abstract

Two-photon absorption (TPA) enables the excitation of molecules by comparatively lower energy photons with longer penetration depth and higher spatial precision control, which advances the uses of organic molecules in various applications. In this work, we report two simple all-organic molecules C42H33N (compound 3) and C138H168N4 (compound 14) with strong TPA and fluorescent emission activity. Density functional theory calculations show that the enhanced oscillator strengths could be responsible for improved TPA and emission activity for compound 14 compared to those for 3. The degradation of C138H168N4 under focused laser illumination without circulation is almost negligible within 5 h, making it a candidate for laser dyes. Solid-state measurements confirm the presence of a direct band gap for electron transition that determines the channel to release the absorbed energy and functionality of the studied molecules. This work emphasizes that a high TPA cross-section and selectable energy relaxation (fluorescent emission or heat dissipation) are equally important to the design of advanced functional TPA molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.