Abstract

Perylene-tethered pillar[5]arenes and C60-boron-dipyrromethene (BODIPY) dyads were synthesized acting as emitters and organic triplet photosensitizers, respectively, for the purpose of improving the efficiency of triplet-triplet annihilation upconversion (TTA-UC). The photophysical properties of the sensitizers (guests) and the emitters (hosts) were not greatly influenced by the chemical modifications except for a notable decrease in the fluorescence quantum yields of the perlyene emitters due to the high local concentration. The perylene-tethered pillar[5]arenes form stable 1:1 complexes with a nitrile-bearing C60-BODIPY dyad, showing association constants as high as 4.0 × 104 M-1. Through host-guest complexation, the efficiencies of both triplet-triplet energy transfer and TTA were significantly enhanced, which overcompensated for the loss of the fluorescence quantum yield of the emitters (hosts). Thus, an improved TTA-UC efficiency of 3.2% was observed even at a diluted concentration of 6 × 10-5 M, demonstrating for the first time the effectiveness of the supramolecular motif for enhancing TTA-UC without varying the inherent photophysical properties of sensitizers and emitters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.