Abstract

We present a scheme to greatly enhance tripartite entanglement in an atom-optomechanical hybrid system driven by a single input laser field. The enhancement of the tripartite entanglement among two longitudinal cavity modes and a mirror oscillation mode is realized via atomic coherence when the cavity free spectral range is about equal to twice the frequency of mechanical oscillation and both cavity modes are blue-detuned by the mechanical frequency to the respective atomic resonant transitions while keeping the two-photon resonance satisfied. Moreover, the entanglement between the two cavity modes exhibits robustness to the variation of the environment temperature. The present atom-assisted optomechanical system provides an alternative platform for the quantum state exchange between light and light, as well as light and matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call