Abstract

Chemiresistive gas sensor with high sensitivity, selectivity and fast response for specific target gas has many applications from environmental monitor to internet of things. Herein, a highly sensitive and selective nanostructured triethylamine (TEA) gas sensor is fabricated successfully by designing semiconductor heterostructures consisting of ZnO nanorods and α-Fe2O3 nanoparticles. ZnO nanorods grow directly on flat Al2O3 electrodes and α-Fe2O3 nanoparticles are deposited onto ZnO nanorods by pulsed laser deposition (PLD). Such α-Fe2O3/ZnO sensor has larger specific surface area (20.79 m2/g), adsorbs more oxygen ions and exhibits higher response (63 to 50 ppm TEA), lower detection concentration (˜1 ppm), and shorter response time (4 s), which are all much better than the controlled ZnO nanorods sensor. Besides the interface depletion layer at the α-Fe2O3/ZnO interface, we find that the surface depletion layer due to oxygen absorption is also very important for the sensor performance. Moreover, more surface adsorbed oxygen in the α-Fe2O3/ZnO sensor is proved by both XPS analysis and density functional theory (DFT) simulation, which highlights the significance of gas sensing mechanism study for such composite heterojunction structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call