Abstract

In recent years, there has been significant attention on the application potential of medium and high-temperature self-lubricating composites as sliding parts in extreme environments. This study examines the effects of different Mo and Ag content on the composition and wear resistance of Ni60-cladded coatings at room temperature, 300 °C and 600 °C, while also analyzing their wear mechanism by studying the tribofilm. The results indicate that with an appropriate weight addition of Mo and Ag, one typical lubricant called Ag2MoO4 emerges. At room temperature, the cladding layer containing 5 wt.% Mo and 5 wt.% Ag exhibits a wear rate of 2.08 × 10−6 mm3/Nm, and an average coefficient of friction (COF) of 0.3410. These two are 85% and 11% lower than those of the Ni60 cladding layer, respectively. At 300 °C, MoO3 and Cr2MoO6 act as solid lubricants. Furthermore, at 600 °C, a MoSi2 and SiO2 film forms on the worn surface to prevent further oxidation of MoSi2 and enhance oxidation resistance. The main wear mechanism is adhesion wear. Under higher temperatures, the newly formed Ag2MoO4 in the composite cladding layer adopts a layered cubic spinel structure where low-energy Ag-O bonds preferentially break during friction processes, demonstrating excellent lubrication performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call