Abstract

A real crude oil-contaminated soil was treated using a two-step method: biosurfactant-assisted soil washing and the biostimulated biotreating of the effluent. The mixture of surfactin and rhamnolipid could enhance the TPH removal from an oil-contaminated soil (32 g/kg) in the soil washing operation. 86% of TPH was removed from the oil-contaminated soil in the soil washing operation under the mixed biosurfactant (surfactin + rhamnolipid) of 0.6 g/L, the soil/water ratio of 20 w/v%, the temperature of 30 °C, and the washing time of 24 h, leaving an effluent containing 5028 mg/L TPH. The effluent was efficiently biotreated in the bioprocess with 5 g/L acclimate biomass daily stimulated with 0.1 mM H2O2, and the concentrtion of TPH decreased to 26 mg/L within 17 d corresponding a TPH biodegradation over 99%. The biostimulation with H2O2 caused the production of a high amount of peroxidase that could accelerate the biodegradation of TPH. Accordingly, the findings suggest that the biosurfactant-assisted washing operation combined with the H2O2-stimulated biodegradation process could be an enhanced green method for efficient treatment of the heavy oil-contaminated soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call