Abstract

The inhibition of oxidation efficiency and the formation of toxic chlorinated organic byproducts owing to Cl- still represent a significant threat to the treatment of high chloride organic wastewater using advanced oxidation processes. This study explores new pathways for utilizing Cl- to promote the formation of Fe(Ⅳ)=O by single atom Fe-CNs catalysts under peroxymonosulfate (PMS) system, which significantly increases sulfamethoxazole (SMX) degradation rate constant by 2.97 times, enhances PMS utilization efficiency (reducing by 92 % PMS consumption) and simultaneously avoids the formation of chlorinated organic byproducts. Experiments and theoretical calculation revealed that the in-situ generated HClO (generated via the reaction of PMS and Cl-) more easily reacts with Fe–pyridinic N active sites of Fe-CNs catalysts to generate Fe(Ⅳ)=O through a lower-energy-barrier pathway, rather than directly oxidates pollutants. This study provides an approach to utilize omnipresent Cl- achieving high efficiency, high selectivity, low PMS consumption and harmless treatment for chloride-containing organic wastewaters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.