Abstract

This study employed superficial ultrasound exposure of good ocular safety and a drug-loaded hydrogel of long residence time to enable transscleral delivery. First, we designed an acoustic adaptor to limit the ultrasound exposure depth to 1.59 mm to protect the posterior eye segments. Then, we optimized the alginate/polyacrylamide ratio (3:7) of a dual-crosslinked hydrogel to enable ultrasound-triggered release of model drug (70-kDa fluorescein isothiocyanate-conjugated dextran). Using fluorescence imaging to quantify the drug release, we showed that the developed method resulted in enhanced transscleral delivery in both ex vivo porcine scleras (2.6-fold) and in vivo rabbit scleras (2.2-fold). We also demonstrated that the method increased the drug penetration depth to the whole thickness of the sclera. In particular, the drug release efficiency increased with increasing ultrasound exposure time (1 and 3 min) and intensity (8, 19, 36, and 61 mW/cm2). Using scanning electron microscopy, we revealed that ultrasound exposure resulted in rougher surfaces and microscale rupture of the hydrogel. Moreover, Masson staining of scleral slices showed that the integrity of the top scleral fibers was disturbed by ultrasound exposure, and this disturbance recovered 3 days later. Our work demonstrates that the developed method holds great potential for mediating ocular drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call