Abstract

The enhanced transmission of higher order plasmon modes with random gold nanoparticles embedded in periodic hole arrays using asymmetric pair aperture as a unit is investigated in the midinfrared regime. Different thicknesses of gold film were deposited inside holes and then annealed to form randomly sized and distributed nanoparticles. The holes deposited with thin gold film exhibit significantly enhanced transmission in higher order modes after thermal annealing. The enormous local electric field around the nanoparticles enhances the scattering effect that contributes to the enhanced infrared transmission. This unique design, which integrates localized and propagating surface plasmons, provides an easy way for midinfrared applications in need of enhanced transmission in higher order modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.