Abstract

Surface wetting and wicking behaviors have significant effects on the collapse of vapor film, and hence boiling heat transfer, during quenching. In this paper, both hemi-wicking (hydrophilic) and wicking (superhydrophilic) surfaces were fabricated using nanoparticle deposition and chemical etching methods, respectively, on stainless steel spheres. Quenching experiments were carried out on these microporous surfaces in saturated water to reveal the influence of surface wickability on the collapse of vapor film during transition boiling. It was shown that the transitional heat flux (THF) at the critical transitional point, which separates the transitional film boiling sub-regime and transitional nucleate boiling sub-regime, is significantly enhanced with improving the surface wickability, and that the most wickable surface leads to a maximum of 656% THF increase as compared to the bare non-porous surface. The Weber number was modified to characterize the instantaneous imbibition of water through the microporous structures upon liquid-solid contact. Based on the hydrodynamic instability model, a linear correlation was proposed between the enhancement ratio of THF and the modified Weber number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.