Abstract
Latrophilin-3 (LPHN3) is an adhesion G protein coupled receptor involved in regulating neuroplasticity. Variants of LPHN3 are associated with increased risk of attention-deficit hyperactivity disorder. Data from mouse, zebrafish, Drosophila, and rat show that disruption of LPHN3 results in hyperactivity, and in the Sprague-Dawley Lphn3 knockout rat, exhibit deficits in learning and memory and changes in dopamine (DA) markers in the neostriatum. To determine the effects of Lphn3 deletion on DA neurotransmission, we compared the concentration, duration, and frequency of DA transients in KO and wild-type rats using fast-scan cyclic voltammetry in brain slices. Lphn3 KO rats showed higher release of DA, and the duration and interevent time were markedly decreased compared with wild-type rats. The data demonstrate that LPHN3 plays a heretofore unrecognized role in DA signaling and may represent a new target for small molecule regulation of DA neurotransmission with translational implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.