Abstract

BackgroundTechniques that enable high levels of transgene expression in plants are attractive for the commercial production of plant-made recombinant pharmaceutical proteins or other gene transfer related strategies. The conventional way to increase the yield of desired transgenic products is to use strong promoters to control the expression of the transgene. Although many such promoters have been identified and characterized, the increase obtainable from a single promoter is ultimately limited to a certain extent.ResultsIn this study, we report a method to magnify the effect of a single promoter by using a weak promoter-based selection system in transgenic rice. tCUP1, a fragment derived from the tobacco cryptic promoter (tCUP), was tested for its activity in rice by fusion to both a β-glucuronidase (GUS) reporter and a hygromycin phosphotransferase (HPT) selectable marker. The tCUP1 promoter allowed the recovery of transformed rice plants and conferred tissue specific expression of the GUS reporter, but was much weaker than the CaMV 35S promoter in driving a selectable marker for growth of resistant calli. However, in the resistant calli and regenerated transgenic plants selected by the use of tCUP1, the constitutive expression of green fluorescent protein (GFP) was dramatically increased as a result of the additive effect of multiple T-DNA insertions. The correlation between attenuated selection by a weak promoter and elevation of copy number and foreign gene expression was confirmed by using another relatively weak promoter from nopaline synthase (Nos).ConclusionsThe use of weak promoter derived selectable markers leads to a high T-DNA copy number and then greatly increases the expression of the foreign gene. The method described here provides an effective approach to robustly enhance the expression of heterogenous transgenes through copy number manipulation in rice.

Highlights

  • Techniques that enable high levels of transgene expression in plants are attractive for the commercial production of plant-made recombinant pharmaceutical proteins or other gene transfer related strategies

  • We demonstrate that a fragment derived from tobacco cryptic constitutive promoter (tCUP) was active in a tissue specific manner in rice transgenic plants and behaved as a weak promoter, driving a selectable marker gene for rice transformation

  • To determine the tCUP1 promoter activity in rice and its ability to drive selectable marker gene expression for rice transformation, the tCUP1 promoter was subcloned to a T-vector and digested for fusion respectively to the hygromycin phosphotransferase (HPT) selectable marker gene or GUS reporter gene in the same binary vector (Figure 2A)

Read more

Summary

Introduction

Techniques that enable high levels of transgene expression in plants are attractive for the commercial production of plant-made recombinant pharmaceutical proteins or other gene transfer related strategies. The conventional way to increase the yield of desired transgenic products is to use strong promoters to control the expression of the transgene. Insertion of an amplification promoting sequence (aps) upstream of an expression cassette was found to increase the transcription of the adjacent heterologous genes by 2.0 to 2.5 fold in tomato and tobacco, respectively [19,20]. In addition to these efforts to promote transcription, codon optimization, proper signal localization peptide and a translation initiation sequence (GCCGCC) are used to achieve enhanced protein translation and stability [21]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call