Abstract

Natural materials derived/extracted Ceramics is an excellent material for developing ceramic-based orthopedic implants. Recently, we have demonstrated an easily scalable, energy-efficient green method to extract ceramic particles from bio-waste i.e. chicken bone. Though the chicken bone extract (CBE) has good biocompatibility, it lacks good mechanical properties in the 3D printed condition as that of human bones. Here, we have reinforced CBE with different weight proportions of silicon carbide to improve the mechanical characteristics of the composite. The hybrid of CBE (oxide) and carbide (SiC) is sintered at different temperatures to understand the effect of the interface of the two ceramics. It is observed that temperature has minimal effect and composition has a noticeable effect on mechanical strength as well as bio-toxicity. The toughness (∼3.58 MJ/m3) and compressive strength (∼64.64 MPa) of the 90:10 composition sintered at 1250 °C show the maximum optimum values. A mathematical model has also been developed to predict and correlate the toughness with porosity, volumetric loading, and elastic modulus of the 3D-printed ceramic composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.