Abstract

Objective. Despite the prevalence of peripheral nerve injuries (PNI), challenges remain in restoring full functionality to those afflicted. For recovery to occur, axons must extend across the injury site to connect with distal targets, where injury gap size is a critical factor in the probability of restoration of function. Current clinical therapies often achieve limited neural regeneration, motivating the development of new therapeutic interventions such as biophysical stimulation. Approach. To investigate the potential for low intensity, pulsed ultrasonic simulation (LIPUS) to impact peripheral nerve regeneration, primary neonatal rat dorsal root ganglion neurons were examined in vitro in response to ultrasound (US). Dissociated neurons were stimulated with varied acoustic power (low, medium, high) and their morphometrics, including total outgrowth, branching, and length, were analyzed acutely after 18 h of growth. Main results. Results show US increases total neurite outgrowth by 2.83-fold compared to unstimulated controls at the highest power. Neurite branching at medium and high-power US increased approximately 2-fold compared to controls, while low stimulation exhibited more muted trends. Neurite branching is also impacted by US, with medium and high power eliciting the highest branching, of approximately 2-fold compared to low power and unstimulated controls. Significance. These results demonstrate that US stimulation of DRG neurons in vitro impacts neurite morphology and enhances total extension, indicating the potential for advancing and understanding driving mechanisms of ultrasonic therapies for peripheral nerve regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call