Abstract

We present recent results using ions of C, O, Si, Fe, Zn and Au at energies between 100 keV and 10 MeV to increase the roughness and porosity of the partially and fully cured precursor phenolic resins. The fully cured phenolic resin is called glassy polymeric carbon (GPC). GPC is chemically inert, biocompatible and useful for medical applications, such as heart valves and other prosthetic devices. Ion implantation enhances biological cell/tissue growth on, and tissue adhesion to, prosthetic devices made from GPC. We have previously shown that increased porosity of GPC is also useful for drug delivery devices. The porosity of the ion implanted partially and fully cured precursor phenolic resins was measured by introducing lithium from a molten LiCl salt into each sample. By using Li(p,2α) nuclear reaction analysis (NRA) we measured the concentration of Li retention in the pre- and post-implanted samples. The surface roughness was measured using optical microscopy. The curing process was monitored using micro-Raman microscopy. We have correlated the NRA measurements of increased pore availability with the observations of increased surface roughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.