Abstract

We investigate the optical Kerr nonlinearities of an ensemble of cold Rydberg atoms under the condition of electromagnetically induced transparency (EIT). By using an approach beyond mean-field theory, we show that the system possesses not only enhanced third-order nonlinear optical susceptibility, but also giant fifth-order nonlinear optical susceptibility, which has a cubic dependence on atomic density. Our results demonstrate that both the third-order and the fifth-order nonlinear optical susceptibilities consist of two parts, contributed respectively by photon-atom interaction and Rydberg-Rydberg interaction. The Kerr nonlinearity induced by the Rydberg-Rydberg interaction plays a leading role at high atomic density. We find that the fifth-order nonlinear optical susceptibility in the Rydberg-EIT system may be five orders of magnitude larger than that obtained in traditional EIT systems. The results obtained may have promising applications in light and quantum information processing and transmission at weak-light level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call