Abstract

Protein thermostability can be increased by some glycine to proline mutations in a target protein. However, not all glycine to proline mutations can improve protein thermostability, and this method is suitable only at carefully selected mutation sites that can accommodate structural stabilization. In this study, homology modeling and molecular dynamics simulations were used to select appropriate glycine to proline mutations to improve protein thermostability, and the effect of the selected mutations was proved by the experiments. The structure of methyl parathion hydrolase (MPH) from Ochrobactrum sp. M231 (Ochr-MPH) was constructed by homology modeling, and molecular dynamics simulations were performed on the modeled structure. A profile of the root mean square fluctuations of Ochr-MPH was calculated at the nanosecond timescale, and an eight-amino acid loop region (residues 186-193) was identified as having high conformational fluctuation. The two glycines nearest to this region were selected as mutation targets that might affect protein flexibility in the vicinity. The structures and conformational fluctuations of two single mutants (G194P and G198P) and one double mutant (G194P/G198P) were modeled and analyzed using molecular dynamics simulations. The results predicted that the mutant G194P had the decreased conformational fluctuation in the loop region and might increase the thermostability of Ochr-MPH. The thermostability and kinetic behavior of the wild-type and three mutant enzymes were measured. The results were consistent with the computational predictions, and the mutant G194P was found to have higher thermostability than the wild-type enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.