Abstract

Ta2O5-SiO2 quasi-rugate filters with a reasonable optimization of rugate notch filter design were prepared by ion-beam sputtering. The optical properties and laser-induced damage threshold are studied. Compared with the spectrum of HL-stacks, the spectrum of quasi-rugate filters have weaker second harmonic peaks and narrower stopbands. According to the effect of functionally graded layers (FGLs), 1-on-1 and S-on-1 Laser induced damage threshold (LIDT) of quasi-rugate filters are about 22% and 50% higher than those of HL stacks, respectively. Through the analysis of the damage morphologies, laser-induced damage of films under nanosecond multi-pulse are dominated by a combination ofthermal shockstress and thermomechanical instability due to nodules. Compared with catastrophic damages, the damage sits of quasi-rugate filters are developed in a moderate way. The damage growth behavior of defect-induced damage sites have been effectively restrained by the structure of FGLs. Generally, FGLs are used to reduce thermal stress by the similar thermal-expansion coefficients of neighboring layers and solve the problems such as instability and cracking raised by the interface discontinuity of nodular boundaries, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call