Abstract

Due to the rich reserves of the raw materials, along with their low cost and nontoxic nature, Mg2Si1−xSnx-based compounds have generated intense attention from the international thermoelectric community for their application in thermoelectric power generation within the intermediate temperature range. In this work, we have adopted a two-step solid state reaction followed by a spark plasma sintering process to prepare a series of Sb-doped Mg2.16(Si0.4Sn0.6)1−ySby (0 ≤ y ≤ 0.055) solid solutions. We discuss the influence of Sb doping and the microstructure on the thermoelectric properties. Our results confirm that Sb acts as an effective n-type dopant and we estimate the maximum amount of Sb the Mg2Si0.4Sn0.6 structure can accommodate to be ∼2.3% by XRD, DSC and EPMA analyses. The electron transport properties and low-temperature electronic heat capacity measurements reveal that both the light conduction band and the heavy conduction band contribute to the transport in n-type Mg2Si0.4Sn0.6 solid solutions. The highest density-of-states effective mass and power factor were observed for Mg2.16(Si0.4Sn0.6)0.985Sb0.015 with an electron concentration of n ≈ 1.67 × 1020 cm−3, which is likely to be due to the Fermi level positioned within ∼2kBT of both the heavy and light conduction bands providing contributions from both bands. In addition, doping with Sb does not seem to affect the lattice thermal conductivity above room temperature. TEM analysis indicates the presence of Sn-rich precipitates with the size of several tens of nanometers dispersed in the Mg2Si0.4Sn0.6 matrix. Such a nanophase may enhance the boundary scattering of phonons and contribute to a low lattice thermal conductivity. Owing to the above characteristics of the band structure and the microstructure, the Mg2.16(Si0.4Sn0.6)0.985Sb0.015 solid solution with n = 1.67 × 1020 cm−3 possessed excellent thermoelectric properties and achieved a high ZT value of 1.3 at 740 K. Further reductions in the lattice thermal conductivity could be achieved via optimization of the nanophase inclusions, leading to a further enhancement of the figure of merit for Mg2Si0.4Sn0.6-based solid solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.