Abstract

Pristine Ag2Se has inherent limitations in its Seebeck coefficient and electronic thermal conductivity, necessitating improvements through carrier concentration manipulation. While its porous structure has been utilized to reduce carrier concentrations, achieving optimal values remains challenging. This study explores enhancing Ag2Se with acetylene carbon black (ACB) nanocomposites to further reduce carrier concentrations and improve thermoelectric (TE) properties. ACB, a cost-effective alternative to other carbon materials, has demonstrated potential in enhancing TE performance in various composites. Ag2Se and ACB composites were synthesized by dispersing different ACB weights in a solution, followed by sintering. Characterization using x-ray diffraction (XRD), Transmission and scanning electron microscopy (TEM and SEM), and other techniques confirmed the phase, structure, and morphology of the composites. The addition of ACB resulted in decreased electrical conductivity and increased Seebeck coefficient in Ag2Se, particularly at ACB concentrations up to 5.0 wt%, balancing the power factor (PF). The total thermal conductivity decreased due to mainly reduced electronic thermal conductivity. The 5.0 wt% ACB sample achieved a zT of approximately 0.8 at 383 K, comparable to the performance of composites using more expensive low-dimensional carbon materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.