Abstract

The change of multivalence band structure configuration between rhombohedral and cubic phase in GeTe offers additional dimension to modify its thermoelectric properties. Here, we report the synergetic optimization of electronic and thermal transport properties in rhombohedral GeTe doped with transition metal Ti. The Seebeck coefficient of Ge1-xTixTe is significantly increased, and the corresponding thermal conductivity is decreased. The structure refinement shows that Ti doping could reduce the lattice constant c/a ratio. Density functional theory calculations demonstrate that the affected crystal field rather than Ti orbitals is contributing to the valence band convergence and a Seebeck coefficient enhancement. Further optimization incorporates the effects of Bi substitution for reducing the carrier concentrations and introducing more point defects. This work not only confirms the transition metal elements as promising dopants for GeTe-based materials but also indicates that the strategy of manipulating the crystal field effect can be exploited as a direct but effective route for improving thermoelectric performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.