Abstract
Electrical and thermal transport properties of synthetic tetrahedrites Cu10TM2Sb4S13 (TM = Mn, Fe, Co, Ni, Zn) and the solid solution Cu12–xMnxSb4S13 (0 ≤ x ≤ 2) have been studied in the context of thermoelectric performance. Among these materials, the parent compound Cu12Sb4S13 exhibits the highest power factor, which is primarily derived from a high electrical conductivity. All substituted derivatives display a significant and uniform reduction in thermal conductivity. Within the TM series, the Mn-substituted sample displays the highest ZT (0.8 at 575 K). Changing the Mn concentration to Cu11MnSb4S13 produces the highest ZT, i.e., 1.13 at 575 K. The relatively high value derives from a favorable balance of low thermal conductivity and a relatively high power factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.