Abstract

For inorganic thermoelectric materials, Seebeck coefficient and electrical conductivity are interdependent, and hence optimization of thermoelectric performance is challenging. In this work we show that thermoelectric performance of PEDOT:PSS can be enhanced by greatly improving its electrical conductivity in contrast to inorganic thermoelectric materials. Free-standing flexible and smooth PEDOT:PSS bulky papers were prepared using vacuum-assisted filtration. The electrical conductivity was enhanced to 640, 800, 1300, and 1900 S cm(-1) by treating PEDOT:PSS with ethylene glycol, polyethylene glycol, methanol, and formic acid, respectively. The Seebeck coefficient did not show significant variation with the tremendous conductivity enhancement being 21.4 and 20.6 μV K(-1) for ethylene glycol- and formic acid-treated papers, respectively. This is because secondary dopants, which increase electrical conductivity, do not change oxidation level of PEDOT. A maximum power factor of 80.6 μW m(-1) K(-2) was shown for formic acid-treated samples, while it was only 29.3 μW m(-1) K(-2) for ethylene glycol treatment. Coupled with intrinsically low thermal conductivity of PEDOT:PSS, ZT ≈ 0.32 was measured at room temperature using Harman method. We investigated the reasons behind the greatly enhanced thermoelectric performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.