Abstract
Forming solid solutions in PbTe based materials can simultaneously reduce lattice thermal conductivity and engineer the band structure to enhance the electrical properties. In this paper, quaternary alloys of Pb1−xMgxTe0.8Se0.2 were designed to improve the figure of merit zT. The significant roles of MgTe in enhancing electrical properties and reducing thermal conductivity of PbTe0.8Se0.2 were investigated. A maximum zT of ∼2.2 at 820 K was achieved in PbTe0.8Se0.2 with 8% MgTe. Subsequently, a large dimension bulk (∼200 g, Φ42 mm × 18 mm) was fabricated and its homogeneity and the repeatability of high zT values were determined. The results show that high zT ∼2.0 can also be achieved even in such a large sample. These results highlight the multi-functional roles of quaternary alloying with Mg and Se, and demonstrate the realistic prospect of large-scale commercial fabrication in high performance PbTe-based thermoelectric materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.