Abstract

Modulating photophysical processes is a fundamental way for tuning performance of many organic devices. However, it has not been explored as an effective strategy to manipulate the thermoelectric (TE) conversion of organic semiconductors (OSCs) owing to their critical requirement to carrier concentration (>1018 cm-3 ) and the fact of low exciton separation efficiency in single element OSCs. Here, an electric field modulated photo-thermoelectric (P-TE) effect in an n-type OSC is demonstrated to realize a significant improvement of TE performance. The electrical and spectroscopy characterizations reveal that the electric field gating generates combined modulation of exciton separation, charge screening, and carrier recombination, which produces a more than ten times improvement of photoinduced carrier concentration. These coupled processes contribute to the unconventional Seebeck coefficient (S)-electrical conductivity (σ) trade-off relationship of the photoexcited films, therefore leading to a more than 500% enhancement in the power factor for n-type OTE semiconductors. This work opens a unique way toward state-of-the-art organic P-TE materials for energy harvesting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.