Abstract
Bi2Te3-based thermoelectric materials with large thermoelectric figure of merit, ZT, at elevated temperatures are advantageous in power generation by using the low-grade waste heat. Here, we show that incorporation of small proportion (0.3 vol. %) of nanophase Cu2Se into BiSbTe matrix causes an enhanced high-temperature thermopower due to elevated energy filtering of carriers and inhibition of minority transport besides enhanced phonon blocking from scattering at interfaces, which concurrently result in an ∼20% increase in the power factor and an ∼60% reduction in the lattice thermal conductivity at 488 K. As a result, ZT = 1.6 is achieved at 488 K in the composite system with 0.3 vol. % of Cu2Se. Significantly, its ZT is larger than unit in broad high-temperature range (e.g., ZT = 1.3 at 400 K and ZT = 1.6 at 488 K), which makes this material to be attractive for applications in energy harvesting from the low-grade waste heat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.