Abstract
Cu2Se‐based binary compounds have recently fetched the attention of researchers due to their remarkable electrical and extremely low thermal properties. In addition, Cu2Se‐based quaternary chalcogenides are expected to present exceptional thermoelectric performance. Cu2Se1−x−ySxTey‐like compounds are synthesized via microwave‐assisted hydrothermal method and their respective thermal and electrical transport properties are studied in this research work. The phase purity and homogeneity are examined by X‐ray diffraction and energy‐dispersive X‐ray spectrometry analysis. The introduction of S and Te elements into Cu2Se matrix enhances Seebeck coefficient resulting in improved electrical performance illustrating a maximum power factor of 989.4 μWK−2 m−1 at 673 K. Furthermore, S‐ and Te‐co‐doped samples exhibit reduced total thermal conductivity values with lowest value of 0.808 WK−1 m−1 for Cu2Se0.96S0.02Te0.02 sample in comparison to 1.18 WK−1 m−1 for the pristine sample. The simultaneous improvement in electrical and thermal properties results in enhanced figure of merit of 0.82 for Cu2Se0.96S0.02Te0.02 sample at 673 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: physica status solidi (RRL) – Rapid Research Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.