Abstract

Zinc antimonide (ZnSb) is a promising thermoelectric material due to its economic viability, elemental abundance, and superior phase stability compared to other Zn-Sb compounds. However, its widespread application is hindered by a low figure-of-merit (zT). Extensive research has explored doping, alloying, and nanostructuring to improve zT. This study investigates the impact of Cr doping in CryZn1-ySb (y = 0.0 – 0.03). Cr doping with y = 0.01 significantly reduces lattice thermal conductivity below the phonon glass limit. Debye-Callaway model calculations suggest a combined effect of point defects and decreased grain size caused by Cr incorporation. This reduction translates to enhanced thermoelectric performance, with the y = 0.01 sample exhibiting a 70 % improvement in zT at 673 K, reaching ∼0.67. Exceeding the Cr substitution limit leads to the formation of a detrimental secondary CrSb2 phase, increasing thermal conductivity. The Single Parabolic Band model calculations predict further zT enhancement in y = 0.01 sample to ∼0.2 at 300 K through optimized carrier concentration (307 % improvement in zT). These findings demonstrate the potential for significant zT improvement in ZnSb via defect engineering and carrier concentration tuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.