Abstract

Cd-containing polycrystalline Bi0.46Sb1.54Te3 samples with precisely controlled phase composition were synthesized by conventional melting-quenching-annealing technique and a melt-spinning method. The pseudo ternary phase diagram for Cd-Bi/Sb-Te in the region near Bi0.46Sb1.54Te3 was systematically studied. Cd serves as an acceptor dopant contributing holes, whereas for samples doped with CdTe, the combined effects of the substitution of Sb/Bi with Cd and the formation of Sb/BiTe antisite defects leads to the increase in hole concentration. Moreover, upon doping with Cd, the lattice thermal conductivity decreases significantly owing to the intensified point defect phonon scattering. The sample with Cd content of 0.01 attains the maximum ZT of 1.15 at 425 K. The utilization of melt-spinning method brings about the in situ nanostructured CdTe and grain size refinement, which further reduce the lattice thermal conductivity while preserving excellent electrical performance. As a result, a higher ZT of 1.30 at 425 K is realized with CdTe content x = 0.005.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call