Abstract

AbstractThermionic emission current in heterostructures can be used to enhance thermoelectric properties beyond what can be achieved with conventional bulk materials. The Bandgap discontinuity at the junction between two materials is used to selectively emit hot electrons over a barrier layer from cathode to anode. This evaporative cooling can be optimized at various temperatures by adjusting the barrier height and thickness. Theoretical and experimental results for nonisothermal thermionic emission in heterostructures are presented. Single stage InGaAsP-based heterostructure integrated thermionic (HIT) coolers are fabricated and characterized. Cooling on the order of a degree over one micron thick barriers has been observed. Nonisothermal transport in highly doped tall barrier superlattices is also investigated. An order of magnitude improvement in cooling efficiency is predicted for InAlAs/InP superlattices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call