Abstract

The objective of this investigation was to elaborate on the influence of grain boundaries on the interfacial thermal conductance between bi-crystalline graphene and polyethylene in a nanocomposite. Reverse non-equilibrium molecular dynamics simulations were implemented in combination with Lennard-Jones and reactive force field interatomic potential parameters. According to the simulation results, high-energy grain boundary atoms in bi-crystalline graphene played a substantial role in enhancing the interfacial thermal conductance values. To further illuminate the mechanisms of enhanced graphene-polyethylene interfacial thermal conductance in the presence of grain boundaries, a systematic study on the vibrational density of states and structural evolution was also performed. It was found that the vibrational coupling between bi-crystalline graphene and the polymer was enhanced; whereas a decline in the radial density profile and coordination number resulted in a shifting of the in-plane vibrational modes such that they amalgamated with those of the polyethylene matrix. Thus, bi-crystalline graphene can be considered to be a superior potential reinforcement for nanocomposites as compared to the pristine configuration for applications in thermoelectric and thermal interface materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.