Abstract

We investigated the thermal properties of quantum-dot light-emitting diodes (QLEDs) using composition-gradient thick-shell CdSe@ZnS/ZnS QDs. Thick-shell QDs with low defective structures effectively prevented electron–hole pairs from nonradiative Auger recombination. More specifically, defects were prevented from thermal-stress-induced expansion at elevated temperatures and high driving currents. Consequently, 97% of EL remained after the device was thermally stressed at temperatures higher than 110 °C, indicating that the nanostructure design of QDs is an important factor for high-performance QLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.