Abstract

Two-dimensional (2D) perovskites have been shown to be more stable than their three-dimensional (3D) counterparts due to the protection of the organic ligands. Herein a method is introduced to form 2D/3D stacking structures by the reaction of 3D perovskite with n-Butylamine (BA). Different from regular treatment with n-Butylammonium iodide (BAI) where 2D perovskite with various layers form, the reaction of BA with MAPbI3 only produce (BA)2PbI4, which has better protection due to more organic ligands in (BA)2PbI4 than the mixture of 2D perovskites. Compared to BAI treatment, BA treatment results in smoother 2D perovskite layer on 3D perovskites with a better coverage. The photovoltaic devices with 2D/3D stacking structures show much improved stability in comparison to their 3D counterparts when subjected to heat stress tests. Moreover, the conversion of defective surface into 2D layers also induces passivation of the 3D perovskites resulting in an enhanced efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.