Abstract

The development of high-temperature organic adhesive for bonding ultra-high-temperature ceramics with excellent thermal shock resistance has important significance to thermal protection systems for high-temperature environment application. In this study, high-temperature organic adhesive (HTOA) with carbon-fiber-SiC nanowires (CF-SiCNWs) binary phase enhancement structure was prepared. The method is that the SiCNWs grow on the chopped carbon-fiber surface and in the matrix of modified HTOA during high-temperature heat treatment with the help of a catalyst by a tip-growth way and with a vapor-liquid-solid (V-L-S) growth pattern. The results showed that the CF-SiCNWs binary phase enhancement structure plays a significant role in improving thermal shock resistance of high-temperature organic adhesive. The retention rate of the joint bond strength for the bonding samples after 20 cycles of thermal shock testing reaches 39.19%, which is higher than for the ones without CF, whose retain rate is only 6.78%. The shear strength of the samples with the CF-SiCNWs binary phase enhancement structure was about 10% higher than for those without the enhancement structure after 20 cycles of thermal shock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call