Abstract

A novel monomer, poly(ethylene glycol) monoacrylate aminopropyltriethoxysilane phenyl phosphate (SNP), containing phosphorus, nitrogen, and silicon was synthesized and then incorporated into a poly(methyl methacrylate) (PMMA) matrix through copolymerization and the sol–gel method to produce organic–inorganic hybrids. The chemical structure of SNP was characterized by FTIR, 1H NMR, 29Si NMR, and 31P NMR spectroscopies. The 29Si MAS NMR results for the hybrid materials suggested the formation of cross-linked networks in the hybrids. A morphological study showed that the inorganic particles were well distributed in the PMMA matrix. The hybrids retained a high transparency and exhibited a significant improvement in glass transition temperature, thermal stability, hardness, and flame retardancy upon the incorporation of SNP into the PMMA matrix. The network structure, homogeneous distribution, and char formation during degradation were proposed as three key reasons for the improved properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.