Abstract

In a cylindrical shell and multi-tube heat exchanger (of large configuration), the incorporation of four distinct nanoparticles (Al2O3, MgO, SiO2, and SnO2) at various concentrations (0%–5%, v/v) into PCM (RT82) was investigated during the solidification process. A numerical model was developed and validated through experimental and theoretical findings found in literature. Whatever the metal oxides’ concentration, a clear enhancement of the freezing rate of PCM was observed over its solidification period, where this improvement was boosted proportionally with the rise of metal oxides concentration. However, the worst performance of the nano-PCM system was obtained using SnO2 nanoparticles, where a total solidification of PCM is observed after 26000 s for 5% (v/v) SnO2. In contrast, the best performance was resulted using SiO2, for which a total hardening of PCM was reached after 21000 s for 5% (v/v) silicon dioxide. This means that a reduction of 19.23% of the freezing period was obtained using SiO2 compared to SnO2 system at the same volume fraction (5%). It was found that in presence of nanoparticles (nano-PCM system), the solidification rate of PCM is in the order: SiO2>MgO > Al2O3>SnO2. According to the thermo-physical properties of metal oxides, it was found that the enhancing role of nanoparticles (toward PCM solidification) is density-dependent. Therefore, the effect of heat capacity may be overlooked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.