Abstract
The rapid development of microelectronic integration technology is placing increasing demands on the safety performance of electronic devices. Excellent thermal interface materials (TIM) facilitate the dissipation of heat from electronic components, which ensures the safety of electronic equipment. In this work, a three-dimensional (3D) thermally conductive framework is constructed from carbon fibers to form silicon carbide (SiC) in situ. This is followed by vacuum impregnation with paraffin wax (PW) to produce phase change composites (PCCs). The results show that the SiC-based 3D thermally conductive framework has a hierarchical porous network structure, and the PCC indicates enhanced thermal conductivity and good anti-leakage properties. The thermal conductivity of PW @ CF1–Si1-1550 is 0.81 W K−1m−1, which is 4 times that of PW. In addition, the PCC also shows good thermal cycling properties, high thermal storage capacity (179.06 Jg-1), and good insulation properties. The PCC as described in this paper as TIM have considerable application potential in thermal management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.