Abstract

To enhance the thermal conductivity of Si3N4, a polydopamine (PDA) coating was creatively introduced into ceramics sintered with different additive contents through a two-step sintering process consisting of a first treatment at 1500 °C for 8 h followed by 12 h at 1900 °C under 1 MPa nitrogen pressure. After the first-step sintering, the PDA-coated sample exhibited a higher elimination effect of the liquid phase and an increase in the N/O ratio, which allowed the additives to directly interact with the Si3N4 grains, resulting in a microstructure with more and larger rod-shaped grains. After the second-step sintering, the densified samples of the PDA-coating attained slightly coarser rod-shaped grains, lower O content, higher N/O ratio and peak intensity (XRD) of the Y2Si3O3N4 phase, thicker grain boundary film, and secondary phases mainly residing in multigrain junctions. Consequently, the thermal conductivity of all the PDA-coated samples typically showed a 10–12% increment in comparison to the PDA-free samples for each additive content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.