Abstract

This study focuses on enhancing thermal properties of aramid copolymer nanocomposites by integrating hexagonal boron nitride (hBN). Pristine hBN (P-hBN) is first subjected to oxidative heat treatment at 900 °C, producing thermally treated hBN (T-hBN), which significantly improves thermal conductivity while also increasing the tensile properties of composites. The study further explores the effect of different diamine co-monomers, 3,4′- and 4,4′-oxydianiline (ODA), on the nanocomposite properties. Both types of ODA-based composite films show improvement in various properties containing T-hBN. With 20 wt% of T-hBN, the 3,4′-ODA and 4,4′-ODA-based films exhibit 33.2 % and 290 % increase in tensile strength and thermal conductivity, respectively. The functionalization of hBN by heat treatment enhances the interaction between aramid copolymer and hBN and prevents the aggregation of hBN. The rough interface was shown in fractured images for films with T-hBN, suggesting that the composite films with T-hBN withstand higher external forces. In addition, it was observed that T-hBN exhibits better dispersion compared to P-hBN. This is supported by molecular dynamics (MD) simulation, and, in addition, it also provides the underlying mechanism for the property differences between both types of co-monomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call